Réalisé par : OMARI Redouane & DACHRY Abdelfattah

Encadré par : Mr. LOUMANI

Année universitaire 2008 /2009

Sommaire

Introduction
Problème de flot de valeur maximale à coût minimal
Notion de base :
Réseau de transport :
Flux :
Flot :
Exemple de flot sur un réseau de transport :
Problème de flot de valeur maximale à coût minimal :
Présentation :
Formulation :
Méthode de résolution :
Définition graphe d'écart :
Théorème d'optimalité :
Construction du graphe d'écart :
Exemple :
Algorithme calculant un flot maximal de coût minimal :
Déroulement de l'algorithme :
Problème de transport
Présentation :
Formulation :
Exemple :
Méthode de résolution: recherche d'une solution de base réalisable :
Solution de base
Méthode du COIN NORD-OUEST :
Application de la méthode du coin nord-ouest
Méthode de BALAS – HAMMER :
Application de l'algorithme de Balas-Hammer
Optimisation d'une solution de base : Algorithme du STEPPING-STONE
Présentation de l'algorithme :
Calcul des couts marginaux à l'aide des potentiels :
Calcule des gains marginaux de la solution de base donnée par l'algorithme de Balas-Ham
Vérification du résultat par le logiciel Solveur d'Excel
Problème d'affectation

Presentation:
Formalisation :
La méthode Hongroise :
Résolution d'un problème d'affectation par l'algorithme hongrois :
Résultat donné par la méthode Hongroise :
Vérification par le logiciel Solveur d'Excel :

<u>Introduction</u>

Toute entreprise qu'elle que soit sa taille, son domaine d'activité est amenée à faire face à des problèmes de gestion au quotidien.

Parmi ces problèmes, on cite les problèmes de flot, d'affectation et de transport qui nécessitent la mise en œuvre d'un procédé de prise de décision rationnel, notamment la recherche opérationnelle, à cause de leur niveau de complexité particulièrement élevé et à cause des coûts supplémentaires qu'ils génèrent s'ils sont mal gérés.

Ce qui souligne l'importance qu'occupe ce type de problème dans la gestion quotidienne de l'entreprise.

C'est pour cette raison que le but de notre travail est de présenter des méthodes faciles de formulation et de résolution de ce genre de problème.

Et pour cela, nous avons divisé notre travail en trois parties, où nous allons aborder dans un premier temps le problème de flot et plus précisément le problème de flot maximal à coût minimal, et ensuite nous allons présenter le problème de transport ainsi que des algorithmes de résolution appropriés. Et enfin nous allons traiter les problèmes d'affectation.

Problème de flot de valeur maximale à coût minimal

Notion de base :

Réseau de transport :

Le réseau de transport est un graphe fini, sans boucle comportant une entrée X_1 (source) et une sortie X_P (puits), telles que : depuis X_1 il existe un chemin vers tout autre sommet X_k et de tout sommet X_k il existe un chemin vers X_p . Tout arc u est valué par un entier positif C(u), nommé capacité de l'arc u, qui présente une capacité de transport associée à la liaison figurée par cet arc (Ex. tonnages disponibles sur des bateaux, des camions, ...)

Flux:

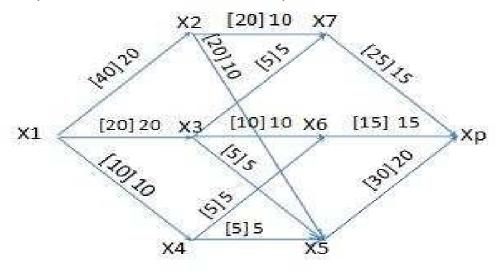
Un flux est la quantité ϕ (u) transportée sur chaque arc u

Flot:

Un flot Φ est déterminé par la donnée du flux pour tout arc du réseau de transport.

La valeur d'un flot $V(\phi)$ est par définition, la somme des flux partant de la source X1 ($V(\phi)$ est aussi égale à la somme des flux des arcs arrivant sur le puits Xp)

Exemple de flot sur un réseau de transport :



Problème de flot de valeur maximale à coût minimal :

Présentation

Connaissant les capacités des arcs d'un réseau de transport et les coûts unitaires de transport sur chaque arc, le problème du flot maximum consiste à trouver la quantité maximale de flot qui peut circuler de la source à la destination au moindre coût. L'algorithme le plus connu pour résoudre ce problème est celui de B. Roy. Nous verrons l'approche par cette méthode qui consiste à construire un graphe "d'écart" dans lequel on recherche un chemin de coût minimum.

Formulation

- R est un réseau de transport où s et p désignent respectivement la source et le puits.
- A chaque arc (i, j) sont associées deux valeurs positives [c ij, pij] où cij est la capacité et pij est le coût unitaire associé à l'arc.
- Le coût d'un flot : Est la somme des coûts sur tous les arcs du réseau.

$$\sum_{i,j} \Phi_{ij} \cdot p_{ij}$$

Problème à résoudre :

$$\begin{cases}
Min & \sum_{i,j} \varphi_{ij} \cdot p_{ij} \\
\varphi_{ij} \leq c_{ij}; & \forall (i,j) \in R \\
\sum_{i,j} \varphi_{ij} = \sum_{j,i} \varphi_{ji}; & \forall i,j \in N, \quad i,j \neq s,p. \\
\sum_{s,j} \varphi_{sj} = \sum_{(j,p)} \varphi_{jp} = V(\varphi)
\end{cases}$$

Méthode de résolution :

Définition graphe d'écar G_{ϕ}^{e} :

Il s'agit d'un graphe qui traduit les augmentations ou diminutions possibles du flot dans le réseau R.

Théorème d'optimalité :

Un flot \spadesuit est de coût minimal parmi les flots de valeur $V(\spadesuit)$, si et seulement si il n'existe pas de chemin de s à p et de circuit de coût strictement négatif dans $G_{-\phi}^{e}$

Construction du graphe d'écart :

- Le graphe d'écart et le réseau de transport ont les mêmes sommets.
- Pour tout arc de (i, j) de R, les arcs et leur valuation sont obtenus de la façon suivante:

1 - si
$$0 < \phi_{ij} <_{C_{ij}}, G_{\phi}^{e}$$
 omporte un arc (i, j) de valuation $\mathbf{v}_{ij} =_{C_{ij}} - \phi_{ij}$ et un arc (j, i) de valuation $\mathbf{v}_{ij} = \phi_{ij}$ 2 - si $\phi_{ij} = 0, G_{\phi}^{e}$ comporte un arc (i, j) de valuation $\mathbf{v}_{ij} =_{C_{ij}}$ mais pas d'arc (j, i)

3 - si
$$\phi_{ii} = _{\mathcal{C}_{ii}}, \mathcal{C}^{e}_{\phi}$$
 comporte un arc (j, i) de valuation $|\mathbf{V}|_{ii} = \phi_{ii}$

mais pas d'arc (i, j)

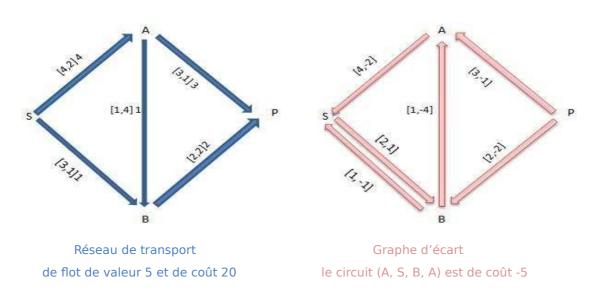
Remarque

Pour le flot nul ($\phi = (0,...,0)$), le graphe d'écart et le réseau de transport coïncident.

Lorsque le coût pij est associé à l'arc (i, j) du réseau de transport, dans le graphe d'écart le coût de l'arc (i, j) est pij et celui de l'arc (j, i) est – pij

Exemple:

Soit un réseau de transport schématisé comme suit :

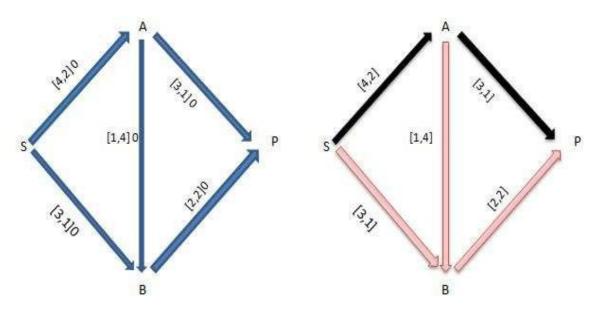


Algorithme calculant un flot maximal de coût minimal :

- 1- initialement $\Phi = (0,...,0); G_{\phi}^{e} \equiv R$
- 2- tant qu'il existe un chemin de s à p dans $\,G_{\phi}^{\,e}$ faire
- 3- déterminer μ, un chemin de coût minimal de s à p
- 4- chercher dans μ , $\partial = \min V_{ij}$
- 5- Augmenter le flux de tout arc appartenant à μ de \eth dans le réseau de transport
- 6- tracer le graphe d'écart ainsi modifier.

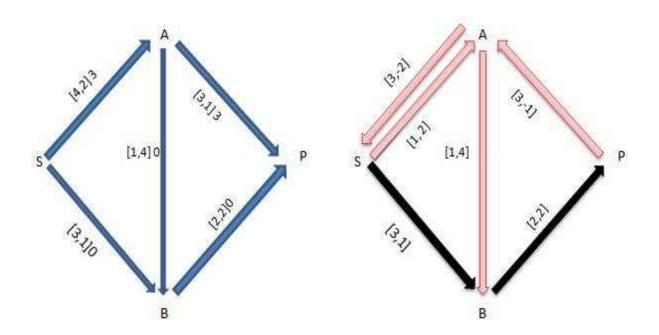
Déroulement de l'algorithme :

Première étape :



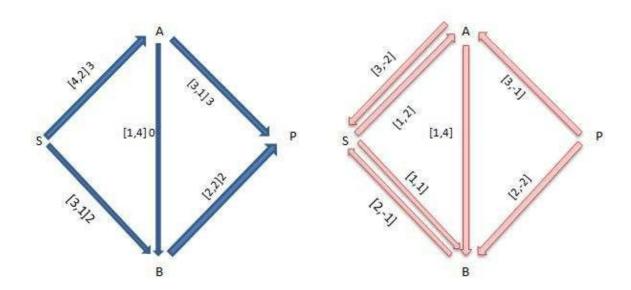
- On part d'un flot compatible ($\phi = (0,...0)$).
- Ensuite, on construit un graphe d'écart à partir de ce flot.
- Ensuite, dans ce graphe d'écart, on cherchera un chemin de S à P de coût minimum en utilisant entre autre l'algorithme de Ford. Dans notre exemple, le chemin de coût minimum de s à p est {S, A, P} de coût 3=7.
- Enfin, on cherche dans ce chemin $\{S, A, P\}$ l'arc de capacité minimale ∂ , dans notre exemple $\partial = 3$, capacité de l'arc (A, P).

Deuxième étape :



- On augmente le flux sur tous les arcs du chemin $\{S, A, P\}$ dans R de $\partial = 3$
- On trace un graphe d'écart pour le réseau de transport ainsi modifié ;
- On cherche dans le graphe d'écart un chemin de coût minimum de S à P, dans notre exemple, il existe encore un chemin de S à P de coût 3=7, il s'agit de {S, B, P};
- On cherche dans ce chemin{S, B, P} l'arc de capacité minimale ∂' , dans notre exemple, $\partial' = 2$, capacité de l'arc (B, P).

Troisième étape :



- On augmente le flux dans le réseau de transport de $\partial' = 2$, pour tous les arcs du chemin{S, B, P}
- On trace le graphe d'écart pour le réseau de transport ainsi modifié ;
- On cherche dans le graphe d'écart un chemin de S à P, dans notre exemple, il n'existe plus de chemin de S à P, et tous les coûts des circuits du graphe d'écart sont positifs ;
- Donc, ce dernier flot est optimal. ($V(\phi)$ = 5, et son coût est de (3*2+2*1+0*4+3*1+2*2=15)).

Problème de transport

Présentation

Un problème de transport peut être défini comme l'action de transporter depuis "m origines" vers "n destinations" des matériaux, au moindre coût.

Donc, la résolution d'un problème de transport consiste à organiser le transport de façon à minimiser son coût.

Formulation:

$$a_{i} = \text{production ou offre}$$

$$b_{j} = \text{ demande}$$

$$X_{ij} = \text{quantit\'e transport\'ee}$$

$$\sum_{i=1}^{m} a_{i} = \sum_{j=1}^{n} b_{j} \quad \forall_{i} \in [1,...,m]; \quad \forall_{j} \in [1,...,m];$$

$$\sum_{j=1}^{m} a_{i} = \sum_{j=1}^{n} b_{j} \quad \forall_{i} \in [1,...,m]; \quad \forall_{j} \in [1,...,m];$$

$$\sum_{j=1}^{n} x_{ij} = a_{i} \quad \forall_{i} \in [1,...,m];$$

$$\sum_{j=1}^{m} x_{ij} = b_{j} \quad \forall_{j} \in [1,...,m];$$

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} X_{ij}$$

$$(3)$$

Exemple:

Soit, la société Alpha possédant quatre dépôts A₁, A₂, A₃ et A₄ dans lesquels existent des quantités respectives de 896, 782, 943, 928 unités d'une matière première, et cinq usines D₁, D₂, D₃, D₄ et D₅ demandant respectivement 800, 439, 50, 790 et 1470 unités de celles-ci. Les coûts de transport, C ii, sont donnés par le tableau ci-dessous.

Comment organiser le transport au moindre coût total?

	D_1	D ₂	D ₃	D ₄	D ₅	a _i
A ₁	21	11	84	49	13	896
A_2	27	52	43	29	42	782
A ₃	11	47	14	80	93	943
A ₄	52	94	76	74	54	928
bj	800	439	50	790	1470	3549

Méthode de résolution: recherche d'une solution de base réalisable :

Solution de base

On appelle solution de base d'un programme de transport, une solution admissible comportant $M=(m+n-1) x_{ij}>0$, c'est-à-dire qu'une solution de base comporte (m.n - M) zéros.

Le graphe d'une solution de base est un graphe connexe sans cycle, c'est-à-dire un arbre comportant N=m+n sommets soit M=N-1 arcs. (Un graphe est connexe s'il existe au moins une chaîne entre toute paire de sommets. Une chaine qui se ferme sur elle-même est un cycle.)

Méthode du COIN NORD-OUEST :

Présentation:

La méthode du coin nord-ouest est une méthode facile mais elle n'a pas de sens économique. Puisqu'elle consiste à affecter au coin nord-ouest de chaque grille la quantité maximale possible sans se préoccuper de l'importance du coût.

Principe:

On considère à chaque étape, le Nord-Ouest de la grille. On part donc de la route (i_1, j_1) ; on sature soit la ligne i_1 soit la colonne j_1 . Puis on recommence sur la sous-grille formée des lignes et des colonnes non saturées.

Cette procédure aboutit en général à une solution de base. Si à chaque choix d'une relation, on a épuisé une demande ou une disponibilité mais non les deux, (sauf pour la dernière), donc on a sélectionné (m + n - 1) liaisons et obtenu (m - 1)(n - 1) zéros.

Application de la méthode du coin nord-ouest

Première étape

 A_1 - D_1 est le coin Nord-Ouest, on lui affecte min (800;896) soit 800 unités demandées par D_1 et fournies en A_1 .

	D_1	D ₂	D ₃	D ₄	D ₅	a _i
A_1	Х					896
A ₂						782
A ₃						943
A ₄						928
b _j	800	439	50	790	1470	3549

	D_1	D ₂	D ₃	D ₄	D ₅
A_1	800				
A ₂					
A ₃					
A ₄					

On sature ainsi la demande D_1 dont la colonne disparaît et on obtient le tableau 2 pour lequel le coin N-O est A_1 - D_2 .

	D2	D3	D4	D5	ai
A1	X				96
A2					782
A3					943
Α4					928
bj	439	50	790	1470	2749

Deuxième étape :

 A_1 - D_2 est le coin N-O, on lui affecte 96 unités demandées par D_2 et fournies en A_1 .

	D ₂	D ₃	D ₄	D ₅	a _i
A ₁	X				96
A ₂					782
A ₃					943
A ₄					928
bj	439	50	790	1470	2749

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂					
A ₃					
A ₄					

On sature ainsi l'offre en A_1 , qui disparaît. On obtient le tableau 3 pour lequel le coin N-O est A_2 -D₂.

	D ₂	D ₃	D ₄	D ₅	a _i
A ₂	X				782
A ₃					943
A ₄					928
bj	439	50	790	1470	2653

Troisième étape :

 A_2 - D_2 est le coin N-O, on lui affecte 343 unités demandées par D_2 et offert par A_2 .

	D ₂	D ₃	D ₄	D ₅	a _i
A ₂	X				782
A ₃					943
A ₄					928
bj	439	50	790	1470	2653

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂		343			
A ₃					
A ₄					

On satisfait ainsi la demande D_2 , qui disparaît. On obtient le tableau 4 pour lequel le coin N-O est A_2 - D_3 .

	D ₃	D ₄	D ₅	a _i
A_2	X			439
A ₃				943
A ₄				928
bj	50	790	1470	2310

Quatrième étape :

A₂-D₃ est le coin N-O, on lui affecte 50 unités fournies par A₂ et demandée en D₃

	D ₃	D ₄	D ₅	ai
A_2	Х			439
A ₃				943
A ₄				928
b _j	50	790	1470	2310

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂		343	50		
A ₃					
A ₄					

On sature la demande D_3 , qui disparaît. On obtient le tableau 5 pour lequel le coin N-O est A_2 - D_4 .

	D ₄	D ₅	a _i
A_2	Х		389
A ₃			943
A ₄			928
b _j	790	1470	2260

Cinquième étape :

 A_2 - D_4 est le coin N-O, on lui affecte 389 unités fournies par A_2 et demandée par D_4 .

	D ₄	D ₅	a _i
A ₂	Х		389
A ₃			943
A ₄			928
b _j	790	1470	2260

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂		343	50	389	
A ₃					
A ₄					

On sature l'offre A_2 , qui disparaît. On obtient le tableau 5 pour lequel le coin N-O est A_3 -D₄.

	D ₄	D ₅	a _i
A ₃	Х		943
A ₄			928
bj	401	1470	1871

Sixième étape :

 A_3 - D_4 est le coin N-O, on lui affecte 401 unités fournies par A_3 et demandée par D_4 .

	D ₄	D ₅	a _i
A ₃	X		943
A ₄			928
b _j	401	1470	1871

	D ₁	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂		343	50	389	
A ₃				401	
A ₄					

On sature la demande D_4 , qui disparaît. On obtient le tableau 5 pour lequel le coin N-O est A_3 - D_5 .

	D ₅	a _i
A ₃	Х	943
A ₄		928
bj	1470	1871

Dernière étape :

Il ne reste qu'une colonne D_5 on affecte aux liaisons existantes le transport de façon évidente.

	D ₅	a _i
A ₃	Х	943
A ₄		928
b _j	1470	1871

Nous avons ainsi obtenu une solution de base réalisable puisque la condition d'avoir (n -1)(m -1) variables nulles dans la solution est satisfaite (12 cases vides dans le dernier tableau)

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	800	96			
A ₂		343	50	389	
Аз				401	542
A ₄					928

Le coût de cette solution de base est de :

	D_1	D ₂	D ₃	D ₄	D ₅
A ₁	21	11	84	49	13
A_2	27	52	43	29	42
A ₃	11	47	14	80	93
A ₄	52	94	76	74	54

Méthode de BALAS - HAMMER:

Présentation:

Cette méthode est basée sur le calcul des regrets. Le regret associé à une ligne ou à une colonne est la différence entre le coût minimum et le coût immédiatement supérieur dans cette ligne ou dans cette colonne. C'est une mesure de la priorité à accorder aux transports de cette ligne ou de cette colonne, car un regret important correspond à une pénalisation importante si on n'utilise pas la route de coût minimum.

La méthode de Balas-Hammer fournit, en général, une solution très proche de l'optimum; le nombre de changements de base nécessaires pour arriver à une solution optimale est peu élevé (il arrive même assez fréquemment que la solution donnée par cette règle soit optimale).

Principe

D'abord, on calcule pour chaque rangée, ligne ou colonne, la différence entre le coût le plus petit avec celui qui lui est immédiatement supérieur.

Ensuite on affecte à la relation de coût le plus petit correspondant à la rangée présentant la différence maximale la quantité la plus élevée possible. Ce qui sature une ligne ou une colonne.

Et on reprendre le processus jusqu'à ce que toutes les rangées soient saturées.

L'algorithmote Balaslammer:

Δl représente la différence entre le coût minimum et celui immédiatement supérieur sur une ligne.

Δc représente la différence entre le coût minimum et celui immédiatement supérieur sur une colonne.

- 1- Calculer les différences Δl et Δc pour chaque ligne et colonne.
- 2- Sélectionner la ligne ou la colonne ayant le Δl ou Δc maximum.

- 3- Choisir dans cette ligne ou colonne le coût le plus faible.
- 4- Attribuer à la relation (i, j) correspondante le maximum possible de matière transportable de façon à saturer soit la destination soit la disponibilité.
- 5- calculer la quantité résiduelle soit demande soit en disponibilité.
- 6- Eliminer la ligne ou la colonne ayant sa disponibilité ou demande satisfaite.
- 7- SI nombre de lignes ou colonnes> 2 retour en 2. SINON affecter les quantités restantes aux liaisons.

Application de l'algorithme de Balas-Hammer

Reprenons l'exemple précédant, et cherchons une solution de base par l'algorithme de Balas-Hammer.

Première étape :

	D_1	D_2	D ₃	D ₄	D ₅	a _i	ΔΙ
A ₁	21	11	84	49	13	896	2
A_2	27	52	43	29	42	782	2
A ₃	11	47	14	80	93	943	3
A_4	52	94	76	74	54	928	2
b _j	800	439	50	790	1470	3549	
Δc	10	36	29	20	29		

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			
A ₂					
A ₃					
A_4					

Deuxième étape :

	D_1	D₃	D ₄	D ₅	a _i	ΔΙ
A_1	21	84	49	13	457	8
A ₂	27	43	29	42	782	2
A ₃	11	14	80	93	943	3
A ₄	52	76	74	54	928	2
b _j	800	50	790	1470	3110	
Δc	10	29	20	29		

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			457
A ₂					
A ₃					
A_4					

Troisième étape :

	D_1	D ₃	D ₄	D ₅	a _i	ΔΙ
A ₂	27	43	29	42	782	2
A ₃	11	14	80	93	943	3
A_4	52	76	74	54	928	2
bj	800	50	790	1013	2653	
Δc	16	29	45	12		

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃					
A_4					

Quatrième étape :

	D_1	D ₃	D ₄	D ₅	a _i	ΔΙ
A ₃	11	14	80	93	943	3
A ₄	52	76	74	54	928	2
b _j	800	50	8	1013	1871	
Δc	41	62	6	39		

	D_1	D_2	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃			50		
A ₄					

Cinquième étape :

	D_1	D ₄	D ₅	a _i	ΔΙ
A ₃	11	80	93	893	69
A ₄	52	74	54	928	2
b _j	800	8	1013	1821	
Δc	41	6	39		

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃	800		50		
A_4					

Sixième étape :

	D ₄	D ₅	a _i	ΔΙ
A ₃	80	93	93	13
A ₄	74	54	928	20
b _j	8	1013	1021	
Δc	6	39		

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃	800		50		
A ₄					928

Septième étape :

	D ₄	D ₅	a _i	ΔΙ
A ₃	80	93	93	13
b _j	8	85	93	
Δc	0	0		

	D_1	D_2	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃	800		50	8	
A_4					928

Dernière étape :

Il nous reste qu'une source non épuisée A_3 , on l'affecte à D_5 qui demande exactement 85 unités.

Enfin, la solution de base est :

	D_1	D ₂	D ₃	D ₄	D ₅
A_1		439			457
A ₂				782	
A ₃	800		50	8	85
A ₄					928

	D_1	D ₂	D₃	D ₄	D₅
A ₁	21	11	84	49	13
A_2	27	52	43	29	42
A ₃	11	47	14	80	93
A ₄	52	94	76	74	54

Son coût est:

= 101.605 UM

Optimisation d'une solution de base : Algorithme du STEPPING-STONE.

Tout d'abord, on va montrer que l'on peut améliorer la solution de base trouvée par la méthode de Balas-Hammer :

	D_1	D_2	D ₃	D ₄	D ₅
A_1		★ 439 ⁻			+457
A ₂				782	↓
A ₃	800	+_	50	8	85
A_4					928

Supposons que l'on veuille transporter sur la liaison A₃-D₂, de coût 47, une unité. Calculons donc le coût marginal ∂32 de cette opération:

$$\partial_{32} = +47 + 13 - 11 - 93 = -44$$

Nous gagnons de cette façon 44 unités monétaires.

Et au lieu de substituer une unité on peut en substituer 85. Dans ce cas la liaison A_3-D_5 disparaît au profit de la liaison A_3-D_2 . Et le gain marginal est de 3740.

Le coût total devient alors 97 865 UM (101.605 - 3740)

Présentation de l'algorithme :

A partir d'une solution de base,

- 1- Calculer les ∂_{ij} (coût marginal de la liaison (i, j)) pour chaque liaison non affectée, en utilisant les potentiels de l'arbre associé.
- SI tous les $\partial_{ij} \ge 0$ l'optimum est atteint.
- 2- Sinon, rechercher le cycle de substitution associé au ∂_{ij} <0 le plus petit.
- 3- Ensuite, rechercher la quantité minimum q parmi les cases marquées "-", et substituer la quantité q le long du cycle pour obtenir une nouvelle solution.
- 4- Revenir à 1

Calcul des couts marginaux à l'aide des potentiels :

On peut définir un ensemble de potentiels (edp) sur un graphe représentant la solution de base (qui est un arbre) si on connaît un potentiel initial, les relations entres sommets et leurs coûts, on peut calculer de proche en proche les autres potentiels. Cette propriété résulte du fait que dans un arbre il existe une chaîne unique entre deux sommets quelconques.

On crée pour la solution de base un edp en attribuant un potentiel zéro à un sommet quelconque, en pratique on prendra le sommet de plus fort degré. De proche en proche on attribue à chaque sommet un potentiel u_i et v_i .

On appelle:

ui: potentiel origine.

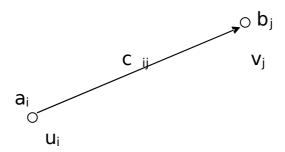
v_i: potentiel destination.

 ∂_{ij} : coût marginal de la liaison (x_i, x_j) .

On a les relations:

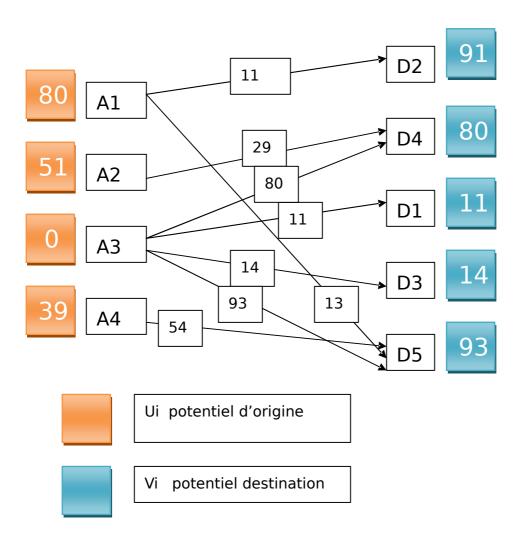
$$c_{ij} = v_i - u_i$$
.

$$\partial_{ij} = c_{ij} - (v_j - u_i).$$



Calcul des gains marginaux de la solution de base donnée par l'algorithme de Balas-Hammer.

1- Calcul des potentiels: mettons arbitrairement le potentiel zéro au sommet A_3 .



2- Les gains marginaux ∂ij sont représentés dans le tableau suivant :

	D ₁	D ₂	D ₃	D ₄	D ₅	Ui
A_1	90		150	49		80
	21		84	49		
A ₂	67	12	80		0	51
	27	52	43		42	
A ₃		-44				0
		47				
A ₄	80	42	101	33		39
	52	94	76	74		
Vj	11	91	14	80	93	

On remarque qu'il existe un coût marginal négatif en (A_3-D_2) , qui est de -44, donc, il y a possibilité d'améliorer la solution de base.

Ensuite, il faut rechercher le cycle de substitution permettant de réaliser le transport auquel correspond $\delta < 0$

	D ₁	D ₂	D ₃	D ₄	D ₅
A ₁		- 439 ←			<u>+</u> 457
A ₂				782	
A ₃	800	V +	50	8	-85
A ₄					928

On contrôle d'ailleurs que : $\partial_{32} = C_{32} + C_{15} - C_{35} - C_{12}$

$$\partial$$
 32 = 47 + 13 - 11 - 93 = -44

Après, il faut chercher la quantité maximale déplaçable parmi les cases 'marquées -', Min (85 ; 439) = 85

Le résultat de cette substitution sera de 85*(-44) = -3740, c'est-à-dire un gain total de 3740 UM. La solution obtenue alors à pour coût 97 865 UM.

La nouvelle solution est donnée ci-dessous :

	D_1	D_2	D ₃	D ₄	D ₅
A ₁		354			542
A ₂				782	
A ₃	800	85	50	8	
A ₄					928

Maintenant, on va chercher pour cette solution les coûts marginaux.

Les gains marginaux ¿ij sont représentés dans le tableau ci-dessous :

	D_1	D ₂	D₃	D ₄	D ₅	Ui
A ₁	21		106	5 49		41
A ₂	27	56 52	80 43		43 42	56
A ₃					93	5
A ₄	36 52	94	57 76	-11 74		0
Vj	16	52	19	85	54	

Il existe encore un coût marginal négatif en A_4 - D_4 (-11). Il y a donc possibilité d'améliorer cette solution.

Effectuons les permutations correspondant au ∂_{ij} négatif, soit (A₄-D₄). Le maximum qu'on peut affecter à la liaison (A₄-D₄) est de 8 unités, on a alors:

	D_1	D ₂	D₃	D ₄	D ₅
A ₁		- 354 ←			+542
A ₂				782	
A ₃	800	+85 _v	50	-8	
A ₄				+	-928

La nouvelle solution est donnée ci-dessous, son coût est de 97 777 UM.

	D ₁	D ₂	D ₃	D ₄	D ₅
A ₁		346			550
A_2				782	
A ₃	800	93	50		
A ₄				8	820

Nous allons évaluer pour cette nouvelle solution les coûts marginaux.

Les gains marginaux ∂ij sont représentés dans le tableau ci-dessous :

	D1	D2	D3	D4	D5	Ui
A1	21		106	16 49		41
A2	27	52	69		42	45
А3				80	93	5
A4	36 52	42 94	76			0
Vj	16	52	19	74	54	

On constate que tous les coûts marginaux ∂ij≥0, donc cette solution est une solution optimale.

L'optimum est unique si aucun des ∂ ij n'est nul, sinon on peut déduire des solutions équivalentes par des substitutions correspondant aux ∂ ij =0.

Pour notre exemple, la solution optimale est unique et elle est atteinte après la deuxième itération et elle a pour coût 97 777 UM

Vérification du résultat par le logiciel Solveur d'Excel

1	А	В	С	D	Е	F	G	Н		j	K	ŧ	M
1		Dı	D ₂	D ₃	D ₄	Ds							
2	A	21	П	84	49	13							
3	A	27	52	43	29	42							
	A ₃	Ш	47	14	80	93							
	A ₄	52	94	76	74	54							
, ,						,							
-													
		Dı	D ₂	D ₃	D ₄	D ₅	a _i						
	A	0	346	0	0	550	896						
0	A ₂	0	0	0	782	0	782						
1	A ₃	800	93	50	0	0	943						
2	A ₄	0	0	0	8	920	928						
3	b _i	800	439	50	790	1470	3549						
4	1												
5	ŧ	=B9*B2+B10*	B3+B11*B4	+B5*B12+C2*	C9+C3*C10+C4*(C11+C5*C12	2+D2*D9+D3*D	10+D4*D11+I	D5*D12+E2*E	9+ <mark>E3*</mark> E10+E4*	E11+E12*E5+	F2*F9+F3*F10	+F4*F11+F5*F
6 7 c	antraitas	90	00	c _	006								
8	ontraites	1 2		6 = 2 =	896 782								
9		3		3 =	943								
0		4		8 =	928								
1			0.00										
2		5	80	0 =	800								
3		6	43	9 =	439								
4		7	5	0 =	50								
.5 .6		8	79	0 =	790								
6		9	147	0 =	1470								

	B14	× (0	fx =	B8*B2+B9*B3	+B10*B4+B5*B1	1+C2*C8+C	3*C9+C4*C10+	C5*C11+D2*[08+D3*D9+D4	*D10+D5*D1	1+E2*E8+E3*E	9+E4*E10+E1	1*E5+F2*F8+F	3*F9+F4*F10	+F5*F1!
A	А	В	С	D	E	F	G	Н		J	K	L	M	N	(
1	í	Di	D ₂	D ₃	D ₄	D_5	i i								
2	Aı	21	11	84	49	13									
3	A2	27	52	43	29	42									
4	A ₃	11	47	14	80	93									
5	A ₄	52	94	76	74	54									
6															
7 _		DI	D ₁	D ₃	D ₄	D ₅	a _i								
8	Aı	0	346	0	0	550	896								
9	Aı	0	0	0	782	0	782								
.0	A ₃	800	93	50	0	0	943								
1	A ₄	0	0	0	8	920	928								
2	bj	800	439	50	790	1470	3549								
3															
4	ŧ	97777													
5 c	ontraintes	1	89	6 =	896										
6		2	783	2 =	782										
17		3	94	3 =	943										
18		4	92	8=	928										
19															
20		5	800	0 =	800										
21		6	439	9 =	439										
22		7	50	0 =	50										
22		8	790	0 =	790										
24		9	1470	0 =	1470										

Problème d'affectation

Présentation:

Il s'agit d'un cas particuliers du problème de transport avec n entrepôts et n magasins, et où la demande associée à chaque destination égale à 1.

Le problème consiste à affecter les éléments d'un ensemble à ceux d'un autre ensemble de sorte que la somme des coûts des affectations soit minimale.

Formalisation:

Le programme à résoudre est :

 $x_{ij} = 1$ si i est affecté à j.

 $x_{ij} = 0$ si i n'est pas affecté à j.

 $C_{ij} = co\hat{u}t d'affectation de i à j.$

$$Min \quad z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1, \quad \forall_{j} \in \{1, 2, ..., n\}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad \forall_{i} \in \{1, 2, ..., n\}$$

$$x_{ij} \in \{0, 1\}, \quad \forall_{i} \in \{1, 2, ..., n\} et \quad \forall_{j} \in \{1, 2, ..., n\}$$

La méthode Hongroise :

Présentation

Cet algorithme repose essentiellement sur la constatation suivante. On ne change pas la ou les solutions optimales en augmentant ou en diminuant d'une même quantité 7 tous les éléments d'une même ligne (ou d'une même colonne) de la matrice des Cij.

Après une telle opération, la valeur totale est augmentée ou diminuée de 7. Par conséquent, si l'on fait apparaître, par des transformations de ce type, suffisamment de zéros dans le tableau, mais pas de coûts négatifs, et qu'il existe n zéros "indépendants" (c'est-à-dire un seul zéro dans chaque ligne et dans chaque colonne), on aura alors trouvé l'affectation optimale.

Résolution d'un problème d'affectation par l'algorithme hongrois :

Afin d'expliquer la démarche suivie, considérons l'exemple suivant :

Soit La société Beta possédant quatre ateliers : fonte, moulage, laminage et traitement thermique, qu'on va nommer respectivement F, M, L et T, pour lesquels elle veut affecter quatre chef de service polyvalents, monsieur A, B, C et D.

Les coûts d'affectation pour chaque liaison sont donnés par le tableau cidessous.

Comment organiser l'affectation de façon à en minimiser le coût?

	F	М	L	Т
А	60	170	330	360
В	130	200	200	400
С	50	300	170	180
D	120	90	250	200

Première étape :

Réduction des lignes : on crée une nouvelle matrice des coûts en choisissant le coût minimal sur chaque ligne et en le soustrayant de chaque coût sur la ligne.

	F	М	L	Т	Réduit de
А	0	110	270	300	60
В	0	70	70	270	130
С	0	250	120	130	50
D	30	0	160	110	90

Exemple: pour la première ligne (A):

• Relation (A, F) : 60 - 60 = 0

• Relation (A, M): 170-60=110

• Relation (A, L): 330-60=270

• Relation (A, T): 360-60=300

Deuxième étape :

Réduction des colonnes : on crée une nouvelle matrice des coûts en choisissant le coût minimal dans chaque colonne et en le soustrayant de chaque coût dans la colonne.

	F	M	L	T
А	0	110	200	190
В	0	70	0	160
С	0	250	50	20
D	30	0	90	0
Réduit de :	0	0	70	110

Troisième étape :

Maintenant, il faut déterminer le nombre minimal de lignes nécessaires sur les lignes et les colonnes pour couvrir tous les zéros.

Si ce nombre est égal au nombre de lignes (ou colonnes), la matrice est réduite; aller à l'étape 5. Si ce nombre est inférieur au nombre de lignes (ou colonnes), aller à l'étape 4.

	F	М	L	Т
А	0	110	200	190
R	0	70	0	160
С	0	250	50	20
	30	0	90	0

Dans ce cas, le nombre minimal de lignes est de 3 qui est inférieur au nombre de ligne ou colonne (4), alors on passe à l'étape 4.

Quatrième étape :

Et enfin, retourner à l'étape 3.

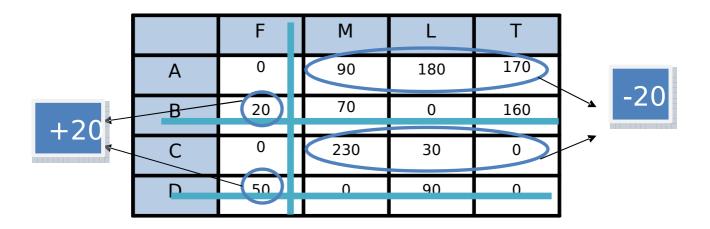
Premièrement, il faut trouver la cellule de valeur minimum non couverte par une ligne, puis, soustraire cette valeur de toutes les cellules non couvertes.

Ensuite, ajouter cette valeur aux cellules situées à l'intersection de deux lignes.

	F		M	L	T	
Α	0		110	200	190	
В	B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		70	0	160	
С			250	50	20	
<u> </u>			0	90	0	

La valeur minimum des cellules non couvertes est 20.

On soustrait 20 des cellules non couvertes et on l'ajoute aux cellules qui se trouvent à l'intersection des lignes, ceci nous donne le tableau suivant :



Maintenant, le nombre minimal de ligne est égale à 4.

	F	М	L	Т
А	0	90	180	170
В	20	70	0	160
	0	230	30	0
	50	0	90	0

La solution optimale est donc la suivante :

	F	М	L	T
А	0	90	180	170
В	20	70	0	160
С	0	230	30	0
D	50	0	90	0

Résultat donné par la méthode Hongroise :

	F	M	L	T
А	1			
В			1	
С				1
D		1		

La solution à pour coût :

	F	М	L	Т
А	60	170	330	360
В	130	200	200	400
С	50	300	170	180
D	120	90	250	200

$$60 + 200 + 180 + 90 = 530 \, \text{UM}$$

Vérification par le logiciel Solveur d'Excel :

	VC	▼ (0.1	X ✓ f _x =C9	*C3+C4*C10+	C5*C11+C6	*C12+D3*D9+D)10*D4+D5*[)11+D6*D12+E	3*E9+E4*E10	+E5*E11+E6*	E12+F3*F9+F4	*F10+F5*F11-	+F6*F12
A	A	В	С	D	E	F	G	Н	I	J	K	L	M
1													
2			F	М	L	Т							
3		Α	60	170	330	360							
4		В	130	200	200	400							
5		С	50	300	170	180	1						
6		D	120	90	250	200							
7		1.00			1700 MIN	0.000							
8			F	М	L	Ť							
9		A	1	0	0	0	Î						
10		В	0	0	ı	0	Ĺ						
11		С	0	0	0	ı	I						
12		D	0	ı	0	0	f						
13			I	I.	I	I	X.						
14													
15		FE .	=C9*C3+C4*C1	.0+C5*C11+C	6*C12+D3*D)9+D10*D4+ <mark>D5</mark>	*D11+D6*D1	2+E3*E9+E4*E	10+E5*E11+E	6*E12+F3*F9	+ <mark>F4</mark> *F10+F5*F	11+F6*F12	
16			21. 34										
17		containtes	1	1	ŧ,	1							
18			2	1:		1							
19			3	1	=	1							
20			4	1:	1	1							
21													
22			5	1:		1							
23			6	1:	4	1							
24			7	1:		1							
25			8	1		1							

	C15 • (f _x =C9	*C3+C4*C10+	C5*C11+C6	*C12+D3*D9+D	10*D4+D5*[)11+D6*D12+E	3*E9+E4*E10)+E5*E11+E6*	E12+F3*F9+F4	*F10+F5*F11+	F6*F12
4	A B	C	D	E	F	G	Н	I	J	К	L	М
1												
2		F	М	L	T							
3	A	60	170	330	360							
4	В	130	200	200	400							
5	С	50	300	170	180							
6	D	120	90	250	200							
7												
8		F	М	L	T							
9	A	ĺ	0	0	0	Ė						
10	В	0	0	I	0	Ē						
11	С	0	0	0	1	- (
12	D	0	Ĭ	0	0	į,						
13	,	L	I.	L	L							
14							ic.					
15	Æ	530										
16		75-72	94									
17	containtes	1	1=	4	1							
18		2	1=		1							
19		3	1=		1							
20		4	1=		1							
21												
22		5	1=	-	1							
23		6	1=		1							
24		7	1=		1							
25		8	1=		1							

Bibliographie:

R. Faure, B Lemaire, C Picouleau : Précis de recherche Opérationnelle - 5ème édition Dunod -

Gérard Desbazeille : Exercices et problèmes de recherche opérationnelle -2éme édition Dunod-

http://www.wearegeaks.info

http://el.poweng.pub.ro/Loc/PL/html/transport.htm

http://www.jut-info.univ-lille1_fr/~afm/old/ro/transport/transport_html